RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.SC. FIRST SEMESTER (July – December), 2012 Mid-Semester Examination, September 2012

Date : 12/09/2012

PHYSICS (General)

Time : 11 am - 12 noon

Paper: I

Full Marks: 25

Answer any five questions taking at least two from each group. Group - A	
1. What do you mean by Scalar triple product? Show that this product represents the vote the body whose dimensions are given by the above triple vectors.	olume of 2+3
2.a) State Gauss' theorem.	2
b) If $\varphi(x,y,z)$ is a scalar function and $\overrightarrow{A}(x,y,z)$ is a vector function, show that $\overrightarrow{\nabla} \cdot (\varphi \overrightarrow{A}) = \varphi \cdot \overrightarrow{\nabla} \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{\nabla} \varphi$.	3
3. Deduce expression for the radial and transverse accelerations for a particle moving in circular path of radius R.	5 5
4.a) Find out the dimension of gravitational constant (G) using dimensional analysis.b) Find an expression of gravitational potential inside a solid sphere of radius R at a dista from the centre.Group - B	ance r 2+3
5. a) Define intensive and extensive variables with example. b) When the volume of a gas kept at NTP is expanded 3 times to its initial volume adiabat what will be its final temperature? [$\gamma = 1.5$]	atically, 2+3
6.a) Prove the relation $C_P - C_V = [(\frac{\partial U}{\partial V})_T + P](\frac{\partial V}{\partial T})_P$, where the symbols have usual meanings. Hence show that, for ideal gas of n mole, $C_P - C_V = n R$. b) Why C_P is greater than C_V for gas.	3+2
7.a) From the first law of thermodynamics show that total internal energy of the universe	is
conserved. b) What is meant by reversible process? What will be the change of internal energy for a process?	cyclic 2+3
8.a) Calculate the volume expansion coefficient (a) and isothermal compressibility (κ_T) for
ideal gas. b) Define thermodynamic equilibrium.	3+2
9. a) Prove that the rms. velocity of a molecule is proportional to the absolute temperaturgas.	e of the
b) The temperature of a gas is increased from 27 °C to 327 °C. Show that the rms. veloc gas at the final temperature will be $\sqrt{2}$ times that was at the initial temperature.	ity of the
10. a) Mention two properties of radiant heat.b) State and explain Kirchoff's law of radiation.	2 3